

XI-254 - VIABILIDADE ECONÔMICO-FINANCEIRA DA UTILIZAÇÃO DE SISTEMA FOTOVOLTAICO EM UNIDADES CONSUMIDORAS DE BAIXA TENSÃO NO SANEAMENTO

Camilla Araújo Coelho Oliveira(1)

Engenheira Civil pela Universidade Federal de Sergipe - UFS. Mestrado em Engenharia Civil pela Universidade Federal de Sergipe - UFS. Engenheira Civil na Companhia de Saneamento de Sergipe - DESO, lotada na Gerência de Gestão Energética - GGEN.

Bárbara Ramos Carvalho de Sá(2)

Engenheira Civil pela Universidade Federal de Sergipe - UFS. Engenheira Civil na Companhia de Saneamento de Sergipe - DESO, lotada na Gerência de Gestão Energética - GGEN.

Endereço⁽¹⁾: Rua Campo do Brito, 331 – Praia 13 de Julho – Aracaju - SE - CEP: 49020-380 - Brasil - Tel: (79) 3226-1079 - e-mail: camilla@deso-se.com.br

RESUMO

Na operação dos sistemas de abastecimento de água e esgotamento sanitário, a energia elétrica é um insumo imprescindível e de grande representatividade no orçamento de uma companhia de saneamento. Esse fato demanda uma gestão adequada deste insumo como também a busca por projetos de eficiência energética que visem não só a redução do consumo, como também do custo com energia elétrica. Diante disso, o projeto de geração de energia elétrica fotovoltaica é apresentado como alternativa capaz de promover um consumo de energia proveniente de fonte renovável, capaz de evitar a emissão de poluentes na atmosfera, e reduzir custos. Foi dimensionada uma usina on grid com 34.360 painéis solares a serem instalados numa área de 12 ha para produção de energia na ordem de 18.000 MWh/ano que atenda unidades consumidoras previamente selecionadas pertencentes ao Grupo B3 - Baixa Tensão. Para a viabilidade econômica do projeto, foram considerados três indicadores: *Payback* descontado, Valor Presente Líquido (VPL) e Taxa Interna de Retorno (TIR). Como resultado, o estudo apresentou *payback* de 9,74 anos para 25 anos de vida útil de projeto, VPL positivo de R\$ 18.841.952,19 e TIR de 21,19%. Atrelado ao resultado econômico, o estudo demonstra a possibilidade de reduzir a emissão de CO2 em 915,318 toneladas por ano. Portanto, o estudo de viabilidade econômico-financeira da utilização de sistema fotovoltaico em unidades de baixa tensão no saneamento mostrou-se viável.

PALAVRAS-CHAVE: Eficiência energética, Saneamento, ESG, Viabilidade econômica, Energia Solar.

INTRODUÇÃO

A eletricidade é um insumo indispensável para a qualidade de vida do ser humano (VOLAN et. al., 2018), como também para diversos setores, a exemplo dos sistemas que compreendem o saneamento básico. Segundo Tsutiya (2006), as despesas com energia elétrica nas empresas de saneamento básico configuram o segundo ou terceiro item mais importante no orçamento das despesas de exploração.

Em 2020, o consumo de energia elétrica dos prestadores de serviços de saneamento no Brasil foi de 12,4 TWh e as despesas foram na ordem de R\$ 7,37 bilhões, que representaram um aumento de 4,8% e de 4,1%, respectivamente, em relação ao ano de 2019 (BRASIL, 2021). No mesmo ano, o total de emissões de CO₂ antrópicas associadas à matriz energética brasileira atingiu 398,3 milhões de toneladas de CO₂ equivalente (EPE, 2021).

Esses dados demonstram a importância e preocupação que deve-se ter com o desenvolvimento sustentável, ou seja, aquele desenvolvimento que assegure o crescimento econômico, sem comprometer a capacidade de

atender as necessidades das gerações futuras. Corroborando com o conceito de desenvolvimento sustentável, as organizações têm adotado o termo ESG - *environmental, social and governance* – e adotado melhores práticas ambientais, sociais e de governança em seus processos.

No aspecto energético, tem-se um duplo desafio: o aumento da geração de energia e a redução das emissões. Para vencê-los é imprescindível adotar uma abordagem ecológica e economicamente viável (CORTELETI e SANTOS, 2021). De acordo com Corrêa (2021), é possível realizar uma transição energética com o aumento do uso de fontes renováveis através da implementação de geração distribuída (GD) de fontes renováveis.

Considerando que o consumo de energia elétrica é inevitável para a gestão e operação dos sistemas de saneamento de água e esgoto e transcorrem numa despesa de exploração significativa (ARAGÃO et. al., 2021), a produção de energia elétrica fotovoltaica torna-se uma alternativa atrativa devido à vasta extensão territorial e ao excelente índice de irradiação solar em todo o Brasil (RIBEIRO, 2021).

Esse trabalho, tendo em vista o panorama apresentado, objetiva apresentar o processo de viabilidade econômico-financeira da utilização de energia elétrica fotovoltaica para atendimento do consumo de unidades consumidoras do grupo B (baixa tensão) da Companhia de Saneamento de Sergipe (DESO-SE), considerando os custos de implantação e manutenção, incentivos governamentais, vantagens e desvantagens atribuídas ao setor.

MATERIAIS E MÉTODOS

A metodologia escolhida para o desenvolvimento dos trabalhos trata-se de pesquisa exploratória com abordagem descritiva e quantitativa por meio de estudo de caso para analisar a viabilidade econômico-financeira da implantação de um sistema fotovoltaico conectado à rede a ser localizado no estado de Sergipe. A Figura 1 apresenta a sequência das etapas adotadas no estudo.

Figura 1: Etapas da metodologia adotada.

Na primeira etapa, foi definido o universo da pesquisa e desenvolvida uma planilha no *LibreOffice Calc* com o intuito de cadastrar informações de unidades consumidoras atendidas em baixa tensão (classificação B3) da concessionária de energia de maior relevância para a DESO e realizar a triagem das unidades que estariam aptas à participação do estudo.

Para o desenvolvimento do Sistema Fotovoltaico, foram levadas em consideração os tipos de sistemas que, de acordo com a norma 16149, podem ser classificados em dois tipos: *off grid* e *on grid* (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2013). O primeiro trata-se de sistemas isolados, que não possuem nenhum tipo de conexão com o sistema público de fornecimento de energia, fazendo uso de baterias. Já o segundo, trata-se de sistemas conectados ao sistema público de fornecimento de energia elétrica, utilizando a rede elétrica como *back-up* da energia sobressalente ou como complemento em caso de geração insuficiente.

Além disso, foi autorizado pela Agência Nacional de Energia Elétrica (ANEEL), através da Resolução Normativa 482/2012, a possibilidade de Compensação de Energia para os sistemas *on grid*, em que, ao fim do mês, é feito o cálculo entre energia gerada e consumida. Além disso, após a publicação da Resolução Normativa 687/2015 pela ANEEL, foi permitida a possibilidade da geração distribuída conjunta, em que a energia gerada pode ser repartida entre várias unidades consumidoras, desde que possuam o mesmo CPF ou

CNPJ e façam parte da mesma área de concessão. Para o dimensionamento do sistema, escolheu-se do tipo *on grid* com geração distribuída conjunta capaz de gerar 100% (cem) da energia a ser consumida pelas unidades selecionadas.

Com as informações e dimensionamento prévio, realizou-se a etapa de cotações com empresas da área para a obtenção de orçamento de Sistema Fotovoltaico capaz de atender a demanda prevista. Por fim, a última etapa tratou-se da modelagem financeira através dos índices *Payback* descontado, Valor Presente Líquido (VPL) e Taxa Interna de Retorno (TIR).

RESULTADOS OBTIDOS

Para o estudo, um grupo de 549 (quinhentos e quarenta e nove) unidades consumidoras (UC's) foram selecionadas e analisadas. O cadastro dos dados pertinentes das unidades selecionadas, como: consumo médio, valor médio da fatura, TIP (taxa de iluminação pública), Taxa de Disponibilidade ou Taxa Mínima e Custo tarifário, foi realizado conforme demonstrado na Figura 2.

NEXO I — Estudo de Viabilidade Econômica nidades Consumidoras Classificação B3 – Serviço Público											
Nº ÚC	Endereço	Sistema	TL	œ	Localidade	Regional	Consumo médio (Jan – Dez/2021)	Valor médio da fatura (Jan – Dez/2021)	TUP	TAXA MÍNIMA	CUSTO TARIFÁRIO
180 EEE 01A	– BAIRRO AMÉRICA	ESGOTO	T	01	ARACAJU	METROPOLITANA	3.293	R\$ 2.367,70	R\$ 269,84	R\$ 60,30	R\$ 1.796,
181 EEE SEN	IIL – BAIRRO NOVO PARAÍSO	ESGOTO	Т	01	ARACAJU	METROPOLITANA	2.028	R\$ 1.570,77	R\$ 269,84	R\$ 60,30	R\$ 1.106,
241 EEA		ÁGUA	T	01	MACAMBIRA	CENTRO-OESTE	7.895	R\$ 5.104,08	R\$ 41,50	R\$ 60,30	R\$ 4.307,
270 POÇO 1	5 – SISTEMA IBURA	ÁGUA	Т	01	ARACAJU	METROPOLITANA	16.051	R\$ 10.307,53	R\$ 319,23	R\$ 60,30	R\$ 8.757,
272 POÇO 1	6 – SISTEMA IBURA	ÁGUA	T	01	ARACAJU	METROPOLITANA	12.335	R\$ 8.005,01	R\$ 319,23	R\$ 60,30	R\$ 6.730,
304 EEE 24 -	- BAIRRO SÃO CONRADO DE ARAÚJO	ESGOTO	T	01	ARACAJU	METROPOLITANA	15.100	R\$ 9.727,99	R\$ 269,84	R\$ 60,30	R\$ 8.238,
4425 EEE 04 -	- BAIRRO 13 DE JULHO	ESGOTO	Т	01	ARACAJU	METROPOLITANA	16.984	R\$ 10.725,96	R\$ 269,84	R\$ 60,30	R\$ 9.266,
10251 EEE 13 -	- BAIRRO CENTRO	ESGOTO	Т	01	ARACAJU	METROPOLITANA	1.876	R\$ 1.464,37	R\$ 269,84	R\$ 60,30	R\$ 1.023,
45282 RESERV	ATÓRIO 02	ÁGUA	T	01	ARACAJU	METROPOLITANA	292	R\$ 449,41	R\$ 269,84	R\$ 60,30	R\$ 159,
79828 EEE 12 -	- BAIRRO CENTRO	ESGOTO	Т	01	ARACAJU	METROPOLITANA	1.050	R\$ 931,47	R\$ 269,84	R\$ 60,30	R\$ 572,
79920 EEE 11 -	- BAIRRO CENTRO	ESGOTO	Т	01	ARACAJU	METROPOLITANA	1.135	R\$ 974,93	R\$ 269,84	R\$ 60,30	R\$ 619,
99609 POÇO 0	2 – SISTEMA IBURA	ÁGUA	Т	01	ARACAJU	METROPOLITANA	23.860	R\$ 15.225,78	R\$ 319,23	R\$ 60,30	R\$ 13.018,
101026 ESCRITO	ORIO COMERCIAL	OUTRO	Т	03	NOSSA SENHORA DAS DORES	NORTE	263	R\$ 262,05	R\$ 9,57	R\$ 60,30	R\$ 143,
103764 ESCRITÓ	PRIO COMERCIAL	OUTRO	Т	03	NOSSA SENHORA DA GLÓRIA	SERTÃO	1.871	R\$ 1.786,14	R\$ 108,54	R\$ 60,30	R\$ 1.020,
103891 ESCRITO	PRIO COMERCIAL / EEA ÁREA 1200	OUTRO	T	01	NOSSA SENHORA DA GLÓRIA	SERTÃO	4.369	R\$ 3.058,65	R\$ 319,24	R\$ 60,30	R\$ 2.383,
108024 EEA ÁRE	A 700 / RESERVATÓRIO	ÁGUA	M	01	NOSSA SENHORA DE LOURDES	SERTÃO	7.258	R\$ 4.551,10	R\$ 41,50	R\$ 18,09	R\$ 3.960,

Figura 2: Planilha eletrônica para preenchimento dos dados das Unidades Consumidoras (UC's).

A partir dos dados tabelados na etapa inicial, percebeu-se que não seria viável a participação de 136 (cento e trinta e seis), equivalente a 25% (vinte e cinco), das unidades do grupo B da concessionária escolhida, optando-se pela exclusão daquelas que possuíam consumos mínimos mensais. Destaca-se que mesmo após a compensação de energia há a permanência da cobrança do "custo de disponibilidade" à concessionária de energia. O estudo resultou em 413 (quatrocentas e treze) unidades consumidoras aptas, que juntas consomem mensalmente cerca 1.495.617 kWh (análise de janeiro de 2021 a dezembro de 2021) e custam um total de R\$ 1.038.572,08 mensais.

A partir da planilha preenchida, foi possível desenvolver a Tabela 1 com dados de consumo agrupados por tipo de sistema e regional e a Tabela 2 com dados de custo com o objetivo de possibilitar a compreensão e clareza do perfil das unidades consumidoras, além de permitir o desenvolvimento de estratégias de prioridades no momento da compensação da energia gerada x consumida.

Tabela 1: Consumo médio mensal (kWh/mês) de energia elétrica no ano de 2021 - DESO.

Regional	Água	Esgoto	Outros	TOTAL
Metropolitana	151.769	180.518	14.722	347.009
Sertão	155.381	5.917	8.136	169.434
Sul	313.275	3.473	475	317.223
Centro-Oeste	333.639	8.295	2.395	344.329

Norte	276.872	37.051	3.699	317.622
TOTAL	1.230.936	235.254	29.427	1.495.617

Tabela 2: Custo médio mensal (R\$/mês) de energia elétrica no ano de 2021 - DESO.

Regional	Água	Esgoto	Outros	TOTAL
Metropolitana	R\$ 103.562,25	R\$ 140.333,27	R\$ 13.836,41	R\$ 257.731.93
Sertão	R\$ 112.094,89	R\$ 4.283,11	R\$ 6.681,55	R\$ 123.059,55
Sul	R\$ 202.739,20	R\$ 2.340,32	R\$ 482,20	R\$ 205.561,72
Centro-Oeste	R\$ 221.511,96	R\$ 5.333,78	R\$ 2.318,30	R\$ 229.164,04
Norte	R\$ 192.103,29	R\$ 27.583,76	R\$ 3.367,79	R\$ 223.054,84
TOTAL	R\$ 832.011,59	R\$ 179.874,24	R\$ 26.686,25	R\$ 1.038.572,08

De posse dos dados apresentados acima, iniciou-se o dimensionamento do Sistema Fotovoltaico Conectado à Rede (SFCR) através da estimativa do tamanho da usina necessária para gerar 100% da energia a ser consumida (1.495.617 kWh/mês ou 49.835,90 kWh/dia). Foi calculada a quantidade de painéis necessários a partir das Equações 1 e 2.

$$PotênciaTotal_{pain\'eis} = \frac{Energia_{geração}}{Tempo_{exposição}} \times \eta = \frac{49.853,90 |kWh/dia|}{5,496 |h/dia| \times 0,8} = 11.338,68 \, kWp \qquad \text{Equação (1)}$$

O valor do tempo de exposição foi obtido em HSP (horas de sol pico), plano horizontal, através dos dados do LABREN - Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia, como mostra a Figura 3. Já o rendimento (η) de 80% foi definido, considerando as perdas do sistema, como: temperatura, sujeira, cabeamento e inversor.

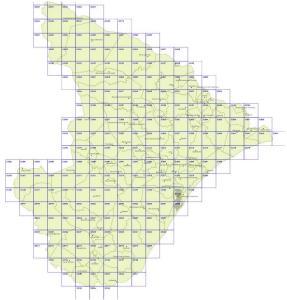


Figura 3: Dados de irradiação para o Estado de SERGIPE. Disponível em http://labren.ccst.inpe.br/atlas-2017-8E.html.

$$Quantidade_{pain\'eis} = \frac{Pot\^{e}nciaTotal_{pain\'eis}}{Pot\^{e}ncia_{pain\'ei}} = \frac{11.338,68 \times 10^3}{330} \equiv 34.360 \, und \qquad \qquad \text{Equação (2)}$$

Foi escolhido o painel de 330W de potência para o dimensionamento do sistema, resultando em uma usina composta por um total de 34.360 unidades de painéis. Posteriormente, foram realizadas cotações com empresas atuantes no mercado de usinas que suprissem o quantitativo de energia necessário, obtendo-se dois orçamentos conforme Tabela 3.

Tabela 3: Orçamentos de SFCR.

Empresa	Investimento (R\$)	Produção de Energia (MWh/mês)
1	R\$ 40,6 mi	1.535,4
2	R\$ 36,9 mi	1.504,9

Para o estudo de viabilidade financeira da instalação do SFCR foram utilizados métodos com base no fluxo de caixa dos projetos, como *payback* descontado, VPL e TIR. Ressalta-se que foram escolhidas premissas conservadoras para nortearem a modelagem financeira como é possível verificar abaixo:

- Vida Útil do SF: 25 anos;
- Degradação do SF: 0,6% ao ano;
- Taxa Mínima de Atratividade (TMA): 15%;
- Custo com energia DESO: R\$ 0,57590/kWh;
- Custo com demanda DESO: R\$ 24,04/kW;
- Reajustes tarifários: 4,8% ao ano.

As Tabelas 4 e 5 demonstram o fluxo de caixa relacionando o valor investido e o valor economizado na conta de energia elétrica durante todo o período do projeto. Foram adotados os valores de investimento da usina completa (equipamentos, instalações, conexão à rede) apresentados pelas empresas 1 e 2. Para o período de projeto, considerou-se a vida útil das placas solares de 25 (vinte e cinco) anos.

Tabela 4: Fluxo de caixa - Empresa 1.

	Investimentos	Fluxo de Caixa	Payback simples	Payback descontado
Ano 0	R\$ 40.600.000,00	-R\$ 40.600.000,00	-R\$ 40.600.000,00	-R\$ 40.600.000,00
Ano 1		R\$ 7.193.583,30	-R\$ 33.406.416,70	-R\$ 34.344.710,17
Ano 2		R\$ 7.471.172,12	-R\$ 25.935.244,58	-R\$ 28.695.430,69
Ano 3		R\$ 7.759.261,18	-R\$ 18.175.983,40	-R\$ 23.593.590,51
Ano 4		R\$ 8.058.236,68	-R\$ 10.117.746,72	-R\$ 18.986.267,54
Ano 5		R\$ 8.368.498,46	-R\$ 1.749.248,26	-R\$ 14.825.644,79
Ano 6		R\$ 8.690.460,44	R\$ 6.941.212,17	-R\$ 11.068.518,93
Ano 7		R\$ 9.024.551,06	R\$ 15.965.763,23	-R\$ 7.675.855,91
Ano 8		R\$ 9.371.213,79	R\$ 25.336.977,02	-R\$ 4.612.389,50
Ano 9		R\$ 9.730.907,59	R\$ 35.067.884,61	-R\$ 1.846.258,24
Ano 10		R\$ 10.104.107,42	R\$ 45.171.992,03	R\$ 651.322,58
Ano 11		R\$ 10.491.304,76	R\$ 55.663.296,79	R\$ 2.906.357,44
Ano 12		R\$ 10.893.008,15	R\$ 66.556.304,94	R\$ 4.942.338,55
Ano 13		R\$ 11.309.743,72	R\$ 77.866.048,66	R\$ 6.780.488,09
Ano 14		R\$ 11.742.055,74	R\$ 89.608.104,40	R\$ 8.439.977,07
Ano 15		R\$ 12.190.507,25	R\$ 101.798.611,65	R\$ 9.938.123,18
Ano 16		R\$ 12.655.680,57	R\$ 114.454.292,22	R\$ 11.290.569,57
Ano 17		R\$ 13.138.177,99	R\$ 127.592.470,21	R\$ 12.511.446,41
Ano 18		R\$ 13.638.622,31	R\$ 141.231.092,52	R\$ 13.613.516,91
Ano 19	<u> </u>	R\$ 14.157.657,55	R\$ 155.388.750,06	R\$ 14.608.309,26

Ano 20	R\$ 14.695.949,55	R\$ 170.084.699,61	R\$ 15.506.235,87
Ano 21	R\$ 15.254.186,69	R\$ 185.338.886,30	R\$ 16.316.701,14
Ano 22	R\$ 15.833.080,51	R\$ 201.171.966,81	R\$ 17.048.198,79
Ano 23	R\$ 16.433.366,50	R\$ 217.605.333,31	R\$ 17.708.399,84
Ano 24	R\$ 17.055.804,72	R\$ 234.661.138,03	R\$ 18.304.232,15
Ano 25	R\$ 17.701.180,63	R\$ 252.362.318,67	R\$ 18.841.952,19

Tabela 5: Fluxo de caixa – Empresa 2.

	Investimentos	Fluxo de Caixa	Payback simples	Payback descontado
Ano 0	R\$ 36.869.832,00	-R\$ 36.869.832,00	-R\$ 36.869.832,00	-R\$ 36.869.832,00
Ano 1	¥ ,	R\$ 7.193.583,30	-R\$ 29.676.248,70	-R\$ 30.614.542,17
Ano 2		R\$ 7.471.172,12	-R\$ 22.205.076,58	-R\$ 24.965.262,69
Ano 3		R\$ 7.759.261,18	-R\$ 14.445.815,40	-R\$ 19.863.422,51
Ano 4		R\$ 8.058.236,68	-R\$ 6.387.578,72	-R\$ 15.256.099,54
Ano 5		R\$ 8.368.498,46	R\$ 1.980.919,74	-R\$ 11.095.476,79
Ano 6		R\$ 8.690.460,44	R\$ 10.671.380,17	-R\$ 7.338.350,93
Ano 7		R\$ 9.024.551,06	R\$ 19.695.931,23	-R\$ 3.945.687,91
Ano 8		R\$ 9.371.213,79	R\$ 29.067.145,02	-R\$ 882.221,50
Ano 9		R\$ 9.730.907,59	R\$ 38.798.052,61	R\$ 1.883.909,76
Ano 10		R\$ 10.104.107,42	R\$ 48.902.160,03	R\$ 4.381.490,58
Ano 11		R\$ 10.491.304,76	R\$ 59.393.464,79	R\$ 6.636.525,44
Ano 12		R\$ 10.893.008,15	R\$ 70.286.472,94	R\$ 8.672.506,55
Ano 13		R\$ 11.309.743,72	R\$ 81.596.216,66	R\$ 10.510.656,09
Ano 14		R\$ 11.742.055,74	R\$ 93.338.272,40	R\$ 12.170.145,07
Ano 15		R\$ 12.190.507,25	R\$ 105.528.779,65	R\$ 13.668.291,18
Ano 16		R\$ 12.655.680,57	R\$ 118.184.460,22	R\$ 15.020.737,57
Ano 17		R\$ 13.138.177,99	R\$ 131.322.638,21	R\$ 16.241.614,41
Ano 18		R\$ 13.638.622,31	R\$ 144.961.260,52	R\$ 17.343.684,91
Ano 19		R\$ 14.157.657,55	R\$ 159.118.918,06	R\$ 18.338.477,26
Ano 20		R\$ 14.695.949,55	R\$ 173.814.867,61	R\$ 19.236.403,87
Ano 21		R\$ 15.254.186,69	R\$ 189.069.054,30	R\$ 20.046.869,14
Ano 22		R\$ 15.833.080,51	R\$ 204.902.134,81	R\$ 20.778.366,79
Ano 23		R\$ 16.433.366,50	R\$ 221.335.501,31	R\$ 21.438.567,84
Ano 24		R\$ 17.055.804,72	R\$ 238.391.306,03	R\$ 22.034.400,15
Ano 25		R\$ 17.701.180,63	R\$ 256.092.486,67	R\$ 22.572.120,19

Para análise de *payback*, escolheu-se o *payback* descontado ao invés do *payback* simples já que o primeiro considera os riscos e viabilidade de um investimento. Conforme dados da figura, observa-se que, ao final dos 25 (vinte e cinco) anos, o projeto apresentara um lucro / economia acima de R\$ 18.000.000,00 para as duas simulações.

Além do *payback*, é importante analisar o investimento considerando o valor do dinheiro durante a aplicação do projeto. Para tanto, o cálculo do VPL e da TIR auxiliarão na tomada de decisão da aceitação ou rejeição do projeto. Para considerá-lo viável, o VPL deverá ser positivo, ou seja, maior que 0 (zero). Caso o VPL seja negativo, recomenda-se tecnicamente a rejeição do projeto. As taxas obtidas no projeto foram maiores que 0 (zero), estando as duas simulações dentro da condição de aceitação.

Por fim, a TIR é utilizada para calcular a taxa de desconto que um determinado fluxo possui para igualar a zero o seu VPL. Ela representa a rentabilidade relativa e deverá ser comparada com a taxa de atratividade da empresa. Os indicadores encontrados tiveram valores acima de 20%, ou seja, superior a 15% que foi a taxa de atratividade mínima adotada, tornando o projeto aceitável, conforme demonstrado na Tabela 6.

Tabela 6: Indicadores econômicos.

Indicadores Econômicos	Empresa 1	Empresa 2
Payback Descontado	9,74 anos	8,25 anos
VPL	R\$ 18.841.952,19	R\$ 22.572.120,19
TIR	21,19%	23,08%

CONCLUSÕES

Conforme exposto neste estudo, foi possível verificar que a adoção da instalação de um sistema de geração de energia elétrica fotovoltaica é uma oportunidade de investimento que poderá gerar beneficios ao longo do tempo. Para tal, a metodologia utilizada para o estudo foi a análise dos resultados dos indicadores econômicos payback descontado, o Valor Presente Líquido (VPL) e a Taxa Interna de Retorno (TIR).

Esses indicadores mostraram-se suficientes para o alcance das hipóteses existentes no estudo. Com os resultados obtidos, conclui-se que o projeto de implantação de energia solar apresenta viabilidade, considerando o período e os dados analisados.

Além de reduzir os custos, a utilização da energia fotovoltaica trará grandes beneficios ao meio ambiente, uma vez que, além de ser uma grande aliada do desenvolvimento sustentável, diminui, consideravelmente, a emissão de gases tóxicos e riscos à natureza em relação a outras formas de energia, pois trata-se de uma energia limpa produzida através da radiação solar.

Com a utilização de energia sustentável a Companhia ganhará reconhecimento de *ESG*, que tornou-se uma forma de definir se as operações das empresas são socialmente responsáveis, sustentáveis e corretamente gerenciadas. Além disso, as questões ESG passaram a ser consideradas essenciais nas análises de riscos e nas decisões de investimentos de bancos, fundos de pensão, gestoras de investimentos e investidores internacionais, o que coloca forte pressão sobre o setor empresarial.

Desta forma, o projeto de execução de Sistema de Geração Distribuída (SGD) por minigeração de energia elétrica de fonte fotovoltaica para produção de até 18.000 MWh/ano é tecnicamente e economicamente viável. Ademais, a geração de energia solar reduzirá as emissões de CO2 em números de 915,318 toneladas por ano.

Entretanto, com a Lei nº 14.300, de 06 de janeiro de 2022, conhecida como Lei do Marco Legal da Geração Distribuída, ocorreram mudanças significativas quanto à delimitação dos percentuais de subsídio à chamada Tarifa do fio B (BRASIL, 2022). Essa tarifa se refere à remuneração às distribuidoras pelo uso da sua infraestrutura elétrica, ou seja, a "Tarifa de Uso do Sistema de Distribuição" ou TUSD Fio B.

Como proposta para pesquisas futuras propõe-se um estudo considerando a incidência da TUSD, ou seja, com as novas diretrizes da Lei nº 14.300/2022; comparação entre o custo da energia fotovoltaica e das tarifas do Grupo A (Azul e Verde).

REFERÊNCIAS BIBLIOGRÁFICAS

- ANEEL Agência Nacional de Energia Elétrica. Resolução Normativa Nº482, 2012.
- 2. ANEEL Agência Nacional de Energia Elétrica. Resolução Normativa N°687, 2015.
- 3. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16149: Sistemas fotovoltaicos (FV) Características da interface de conexão com a rede elétrica de distribuição. Rio de Janeiro. 2013.
- 4. ARAGÃO, T. N. M.; GARCIA, E. S.; MACHADO, H. M.; OLIVEIRA, T. F. V. Implantação de Projeto de Eficiência Energética em uma Estação Elevatória de Água tratada do Sistema de Abastecimento de Água de Salvador Bahia. Congresso da Abes, 31, 2021, Curitiba PR.
- 5. BRASIL. Presidência da República. Lei nº 14.300, de 06 de janeiro de 2022. Institui o marco legal da microgeração e minigeração distribuída, o Sistema de Compensação de Energia Elétrica (SCEE) e o

- Programa de Energia Renovável Social (PERS); altera as Leis nºs 10.848, de 15 de março de 2004, e 9.427, de 26 de dezembro de 1996; e dá outras providências. Brasília-DF. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2022/lei/L14300.htm
- 6. BRASIL. Ministério do Desenvolvimento Regional. Secretaria Nacional de Saneamento SNS. Sistema Nacional de Informações sobre Saneamento: Diagnóstico Temático (Serviços de Água e Esgotos) 2020. Brasília: SNS/MDR, 2021.
- CORRÊA, L. Transição energética, políticas de inovação e desenvolvimento econômico: uma análise das iniciativas em energias eólica e solar fotovoltaica no Brasil / Lucas Corrêa; orientador, Silvio Antônio Ferraz Cário, 2021. 172 p.
- 8. CORTELETI, G. M.; SANTOS, A. C. (2021). Análise de viabilidade econômica para implantação de sistema fotovoltaico residencial na região de Vila Velha ES. Revista Produção Online, 21(2), 415–436. https://doi.org/10.14488/1676-1901.v21i2.3766.
- 9. EPE Empresa de Pesquisa Energética. Balanço Energético Nacional 2021 ano base 2020. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-588/BEN S%C3%ADntese 2021 PT.pdf. Acesso em: 8 nov. 2022.
- 10. RIBEIRO, F. D. Uma estratégia para escalonamento de consumo de energia elétrica em cenários com geração distribuída / Frederico Deivson Ribeiro. Goiânia: Instituto Federal de Educação, Ciência e Tecnologia de Goiás, 2021. 114 f.: il.
- 11. TSUTIYA, M. T. Redução do custo de energia elétrica em sistemas de abastecimento de água. 1ª Edição. São Paulo Associação Brasileira de Engenharia Sanitária e Ambiental, 2006. 185 p.
- 12. VOLAN, T.; ZANARDO, R. P.; BALBINO, A. J. Análise de viabilidade econômica de implantação de um sistema de geração de energia fotovoltaica. *International Congress of Management, Technology and Innovation*, 4, 2018, Erechim RS.